SSS Similarity 

SSS similarity : If the corresponding sides of two triangles are proportional, then the two triangles are similar.

Given : Two triangles ABC and DEF such that
AB BC CA
---- = ------ = ------
DE EF FD

Prove that : ΔABC ~ ΔDEF

Construction : Let P and Q be two points on DE and DF respectively such that DP = AB and DQ = AC. Join PQ.


Statements
Reasons
1)  AB        AC
    ---- = ------
      DE      DF
1) Given
2)   DP       DQ
   ---- = ------
      DE       DF
2) As AB = DP and AC = DQ. By substitution
3) PQ || EF 3) By converse of basic proportionality theorem
4) ∠DPQ = ∠E and ∠DQP = ∠F 4) Corresponding angles
5) ΔDPQ ~ ΔDEF 5) By AA similarity
6) DP PQ
---- = ------
DE EF
6) By definition of similar triangles
7) AB PQ
---- = ------
DE EF
7) As DP = AB , by substitution
8)  PQ      BC
   ---- = ------
    EF     EF
8) From (1) (6) and (7)
9) PQ = BC 9) From (8)
10) ΔABC ≅ ΔDPQ 10) By S-S-S postulate
11) ΔABC ~ ΔDEF 11) From (5) and (10)

Examples

Statements
Reasons
1) AB = 4; AC = 2;CB = 6; DE = 2; DF = 1; FE = 3 1) Given
2) AB BC CA
---- = ------ = ------
DE EF FD
2) Property of proportion
3) ΔABC ~ ΔDEF 3) By S-S-S-similarity


Practice

1) In ΔPQR ~ ΔXYZ, PQ = 5cm, QR = 4cm and PR= 6m ,find XY, YZ and XZ.
2) In ΔABC, D and E are any points on AB and AC respectively, such that DE||BC. If AD=x cm, DB=x-2 cm, AE=x-1 cm, then find the value of x.

Criteria for Similarity

AAA Similarity
AA Similarity
SSS Similarity
SAS Similarity
Practice on Similarity

From SSS Similarity to Criteria for Similarity of Triangles

Home Page