Standard form Vetex form y = ax^{2} + bx + c f(x) = a(x –h )^{2} +k |
Importance of ‘a’ 1) If a > 0 then the parabola open upwards.( ∪) 2) If a < 0 then the parabola open downwards (∩) 3) If |a | > 1 then parabola stretches sideways. 4) If | a| < 1 then parabola is narrower. |
x = h = - b/ 2a |
Standard form Vetex form y = ax^{2} + bx + c f(x) = a(x –h )^{2} +k |
Vetex form f(x) = a(x –h )^{2} +k |
Importance of ‘a’ 1) If a > 0 then the parabola open upwards.( ∪) 2) If a < 0 then the parabola open downwards (∩) 3) If |a | > 1 then parabola stretches sideways. 4) If | a| < 1 then parabola is narrower. |