**Covid-19 has led the world to go through a phenomenal transition .**

**E-learning is the future today.**

**Stay Home , Stay Safe and keep learning!!!**

For example compare the functions below :

Without the chain rule 1) $x^{3}+1$ 2) cos(x) 3) (2x+1) 4) x + sin(x) |
With the chain rule 1) $\sqrt{x^{3}+1}$ 2) cos(4x) 3) $(2x +1)^{4}$ 4) x + $sin(x)^{2}$ |

(f O g)' = f'(g(x)). g'(x)

OR

$\frac{\text{d}}{\text{d}x} [(f O g)(x)] = \frac{\text{d}}{\text{d}g(x)}[(f O g)(x)].\frac{\text{d}}{\text{d}x}((g(x))$

$\frac{\text{d}y}{\text{d}x}= \frac{\text{d}y}{\text{d}u}.\frac{\text{d}u}{\text{d}x}$

Proof :

$ \frac{\text{d}}{\text{d}x} [(f(x)] =\lim_{\triangle x \rightarrow 0}\frac{f(x+\triangle x) -f(x)}{\triangle x}$

$ \frac{\text{d}}{\text{d}x} [g(x)] =\lim_{\triangle x \rightarrow 0}\frac{g(x+\triangle x) -f(x)}{\triangle x}$

Now,
$\frac{\text{d}}{\text{d}x} [(f O g)(x)]=\lim_{\triangle x \rightarrow 0}\frac{fOg(x+\triangle x) -fOg(x)}{\triangle x}$

$=\lim_{\triangle x \rightarrow 0}\frac{f[g(x+\triangle x)] -f[g(x)]}{\triangle x}$

$=\lim_{\triangle x \rightarrow 0}\frac{f[g(x+\triangle x)] -f[g(x)].[g(x + \triangle x) - g(x)]}{\triangle x.[g(x + \triangle x) - g(x)]}$

$=\lim_{\triangle x \rightarrow 0}\frac{f[g(x+\triangle x)] -f[g(x)]}{[g(x + \triangle x) - g(x)]}.\lim_{\triangle x \rightarrow 0}\frac{g(x + \triangle x) - g(x)}{\triangle x}$

$=\lim_{g(x+h) \rightarrow g(x)}\frac{f[g(x+\triangle x)] -f[g(x)]}{[g(x + \triangle x) - g(x)]}.\lim_{\triangle x \rightarrow 0}\frac{g(x + \triangle x) - g(x)}{\triangle x}$

(since g(x) is differentiable, g(x) is continuous and hence $\lim_{\triangle x \rightarrow 0}(x + \triangle x) = g(x))$

$\frac{\text{d}}{\text{d}x} [(f O g)(x)] = \frac{\text{d}}{\text{d}g(x)}[(f O g)(x)].\frac{\text{d}}{\text{d}x}((g(x))$

y= sin($x^{2} +1 ) $

Let u = $x^{2} +1 $

y= sin(u) and u =$x^{2} +1 $

$\frac{\text{d}y}{\text{d}u}= cos(u)$ and $\frac{\text{d}u}{\text{d}x}= 2x $

Now by chain rule for differentiation,

$\frac{\text{d}y}{\text{d}x}= \frac{\text{d}y}{\text{d}u}.\frac{\text{d}u}{\text{d}x}$

$\frac{\text{d}y}{\text{d}u}= cos(u).2x$

= 2x cos($x^{2}+1)$

$\frac{\text{d}}{\text{d}x}[sin(x^{2} +1)] = 2x cos(x^{2} +1) $

**Example 2:** Differentiate with respect to x

y= ($e^{sin(x)} ) $

**Solution :** y= ($e^{sin(x)} ) $

Let u = sin(x)

y= $e^{u}$ and u = sin(x)

$\frac{\text{d}y}{\text{d}u}=e^{u} $ and $\frac{\text{d}u}{\text{d}x}= cos(x) $

Now by chain rule for differentiation,

$\frac{\text{d}y}{\text{d}x}= \frac{\text{d}y}{\text{d}u}.\frac{\text{d}u}{\text{d}x}$

$\frac{\text{d}y}{\text{d}u}= e^{u}.cos(x)$

= $e^{sin(x)}.cos(x)$

$\frac{\text{d}}{\text{d}x}[(e^{sin(x)} )] = e^{sin(x)}.cos(x) $

Home

**Covid-19 has affected physical interactions between people.**

**Don't let it affect your learning.**

GMAT

GRE

1st Grade

2nd Grade

3rd Grade

4th Grade

5th Grade

6th Grade

7th grade math

8th grade math

9th grade math

10th grade math

11th grade math

12th grade math

Precalculus

Worksheets

Chapter wise Test

MCQ's

Math Dictionary

Graph Dictionary

Multiplicative tables

Math Teasers

NTSE

Chinese Numbers

CBSE Sample Papers