# Comparison Of Ratios

For comparison of ratios, we follow the following steps :**Step 1 :**Obtain the given rations.

**Step 2:**Express each ratio in the simplest fraction form.

**Step 3:**Find the LCM of the denominators of the fractions obtained in

Step 2.

**Step 4 :**Make the denominators same for each fractions.

**Step 5 :**Compare the numerators. The fraction having larger numerator will be larger than the other.

**Examples :**

1) Compare the ratios 5 : 12 and 3 : 8.

**Solution :**

5 : 12 = 5/12 and 3 : 8 = 3/8

LCM of 12 and 8 is 24

(5 x 2)/(12 x 2) = 10/24 and (3 x 3)/(8 x 3) = 9/24

Clearly, 10 > 9

∴ 10/24 > 9/24

⇒ 5/12 > 3/8.

⇒ 5 : 12 > 3 : 8.

--------------------------------------------------------------------

2) Compare the ratios 7 : 6 and 24 : 9.

**Solution :**

7 : 6 = 7/6 and 24 : 9 = 24/9

LCM of 6 and 9 is 18.

(7 x 3)/(6 x 3) = 21/18 and (24 x 2)/(9 x 2) = 48/18

Clearly, 21 < 48

&there4 21/18 < 48/18

⇒ 7/6 < 24/9

⇒ 7 : 6 < 24 : 9.

--------------------------------------------------------------------

3) Compare the ratios 4 : 7 and 5 : 8

**Solution :**

4 : 7 = 4/7 and 5 : 8 = 5/8

LCM of 7 and 8 is 56.

(4 x 8)/(7 x 8) = 32/56 and (5 x 7)/(8 x 7) = 35/56

Clearly, 32 < 35

&there4 32/56 < 35/56

⇒ 4/7< 5/8

⇒ 4 : 7 < 5 : 8

**Ratio - Proportion**

• Ratio and Proportion

• Ratio in the simplest form

• Comparison of ratios

• Equivalent ratios

• Proportion

• Continued Proportion

• Ratio and Proportion

• Ratio in the simplest form

• Comparison of ratios

• Equivalent ratios

• Proportion

• Continued Proportion

Home Page