GMAT GRE 1st Grade 2nd Grade 3rd Grade 4th Grade 5th Grade 6th Grade 7th grade math 8th grade math 9th grade math 10th grade math 11th grade math 12th grade math Precalculus Worksheets Chapter wise Test MCQ's Math Dictionary Graph Dictionary Multiplicative tables Math Teasers NTSE Chinese Numbers CBSE Sample Papers 
Congruent TrianglesCovid19 has led the world to go through a phenomenal transition . Elearning is the future today. Stay Home , Stay Safe and keep learning!!! If two triangles are equal in all respects, they are said to beCongruent triangles . Thus two congruenttriangles have the same shape and same size. Let ΔABC and ΔPQR be two triangles. Then we can superimpose ΔABC on ΔPQR, so as to cover exactly. Due to this superimposition : Vertex A falls on Vertex P Vertex B falls on Vertex Q Vertex C falls on Vertex R AB = PQ ∠A = ∠P BC =QR ∠B = ∠Q AC = PR ∠C = ∠R Hence triangles ABC and PQR are congruent to each other. Note : 1) Congruenttriangles are similar but the similar triangles are not always congruent. 2) The symbol ≅ reads " is congruent to ". If two triangles are congruent then there is one to one correspondence (↔) between the two triangles. ΔABC ↔ ΔPQR then ∠A ≅ ∠P , ∠B ≅ ∠Q and ∠C ≅ ∠R ∠AB ≅ ∠PQ , ∠BC ≅ ∠QR and ∠AC ≅ ∠PR . Note : If two triangles are congruent then their corresponding parts are congruent. C orresponding P arts of C ongruent T riangles are C ongruent ⇒ C. P .C. T. C Congruence Relation 1) Every triangle is congruent to itself. ΔABC ≅ ΔABC. 2) If ΔABC ≅ ΔPQR then ΔPQR = ΔABC. 3) If ΔABC ≅ ΔPQR and ΔABC ≅ ΔDEF then ΔPQR ≅ ΔDEF. Examples : In the following pairs of triangles, find out whether the triangles in each pair are congruent or not. 1) ΔABC : AB = 3 , BC = 4 and ∠B = 90 ^{0} ΔDEF : DE = 3 , DF = 4 and ∠E = 90 ^{0} . Solution : Here , ΔABC not ≅ Δ DEF because there is no one to one correspondence between BC and DF. 2) Δ ABC : AB = 3 , AC = 5 and BC = 6 Δ PQR : PQ = 3 , PR = 5 and QR = 6 Solution : Here ΔABC ≅ ΔPQR because there is one to one correspondence between all the sides. Triangles • Introduction to Triangles • Types of Triangles on the basis of Sides • Types of Triangles on the basis of Angles • Angle Sum Property of Triangles • Exterior and Interior angles of Triangle • Triangle Inequality Property • Congruent Triangles • Postulates of Congruent Triangle • Inequality in Triangle 7th grade math Home Page Covid19 has affected physical interactions between people. Don't let it affect your learning.
More To Explore
