Constant Multiple Rule 

We at ask-math believe that educational material should be free for everyone. Please use the content of this website for in-depth understanding of the concepts. Additionally, we have created and posted videos on our youtube.

We also offer One to One / Group Tutoring sessions / Homework help for Mathematics from Grade 4th to 12th for algebra, geometry, trigonometry, pre-calculus, and calculus for US, UK, Europe, South east Asia and UAE students.

Affiliations with Schools & Educational institutions are also welcome.

Please reach out to us on [email protected] / Whatsapp +919998367796 / Skype id: anitagovilkar.abhijit

We will be happy to post videos as per your requirements also. Do write to us.

The constant multiple rule : If 'f' is a differentiable function and k is any real number, then kf is also differentiable and

$\frac{\text{d}[kf(x)]}{\text{d}x}=k\frac{\text{d}f(x)}{\text{d}x}= kf'(x)$

Prove that: $\frac{\text{d}[kf(x)]}{\text{d}x}= kf'(x)$

Proof : $\frac{\text{d}[kf(x)]}{\text{d}x} = \lim_{\triangle x \rightarrow 0}\frac{k f(x+\triangle x)-kf(x)}{\triangle x}$

= $\lim_{\triangle x \rightarrow 0}k[\frac{ f(x+\triangle x)-f(x)}{\triangle x}]$

$\frac{\text{d}[kf(x)]}{\text{d}x}=k[\lim_{\triangle x \rightarrow 0}\frac{ f(x+\triangle x)-f(x)}{\triangle x}]$

According to the definition of derivative
$\frac{\text{d}[f(x)]}{\text{d}x} = \lim_{\triangle x \rightarrow 0}\frac{f(x+\triangle x)-f(x)}{\triangle x}$

So, $\frac{\text{d}[kf(x)]}{\text{d}x} = k\frac{\text{d}[f(x)]}{\text{d}x}$

1) $\frac{\text{d}[kf(x)]}{\text{d}x} = k\frac{\text{d}[f(x)]}{\text{d}x}$

2) $ {\frac{\text{d}[\frac{f(x)}{k}]}{\text{d}x} = \frac{\text{d}[\frac{1}{k}f(x)]}{\text{d}x}}=\frac{1}{k}\frac{\text{d}[f(x)]}{\text{d}x}$

Examples of constant multiple rule

1) Find :$ \frac{\text{d}[5x^{4}]}{\text{d}x}$

Solution :$ \frac{\text{d}[5x^{4}]}{\text{d}x}$



2) Find : $\frac{\text{d}[\frac{3}{x}]}{\text{d}x}$

Solution : $\frac{\text{d}[\frac{3}{x}]}{\text{d}x}$

= 3$\frac{\text{d}[\frac{1}{x}]}{\text{d}x}$





$\frac{\text{d}[\frac{3}{x}]}{\text{d}x} =\frac{3}{x^{2}}$

3) Find: $\frac{\text{d}[\frac{5}{\sqrt[3]{x^{2}}}]}{\text{d}x}$

=$\frac{\text{d}[\frac{5}{\sqrt[3]{x^{2}}}]}{\text{d}x} $






= -5$\frac{1}{x^{\frac{5}{3}}}$


The constant multiple rule and the power Rule can be combined into one rule. The combination rule is given by


Practice questions :
1) Find the derivative of $\frac{-3x^{2}}{2} $

2) Find the derivative of $\frac{7}{2x^{3}} $

3) Find the derivative of $16x^{5}$

4) Find the derivative of $6x^{-3}$

5) Find the derivative of $\frac{1}{2x^{-2}}$

12th grade math


Russia-Ukraine crisis update - 3rd Mar 2022

The UN General assembly voted at an emergency session to demand an immediate halt to Moscow's attack on Ukraine and withdrawal of Russian troops.