Cube Root of Rational Numbers
Definition of cube root of rational numbers : If x and a are two rational numbers such that x
3 = a then we say that x is the cube root of a and we write
∛a = x
We know that,
(3/4)
3 = 27/64 ⇒ ∛(27/64) = 3/4
(-4/11)
3 = -64/1331 ⇒ ∛(-64/1331) = -4/11
So in order to find the cube-root of rational-numbers we use the following :
For any rational number a/b, we have
∛(a/b) = (∛a)/(∛b)
Examples :
1) ∛(27/8)
Solution :
∛(27/8) = (∛27)/(∛8)
= (∛3 x 3 x 3)/(∛2 x 2 x 2 )
∛(27/8) = 3/2
________________________________________________________________
2) ∛(-64/125)
Solution :
∛(-64/125) = (∛-64)/(∛125)
= (∛-4 x -4 x -4)/(∛5 x 5 x 5 )
∛(-64/125) = -4/5
________________________________________________________________
3) ∛(1.331)
Solution :
∛(1.331) = ∛(1331/1000)
∛(1331/1000) = (∛1331)/(∛1000)
= (∛11 x 11 x 11)/(∛10 x 10 x 10 )
∛(1.331) = 11/10
∛(1.331) = 1.1
________________________________________________________________
4) ∛(0.008)
Solution :
∛(0.008) = ∛(8/1000)
∛(8/1000) = (∛8)/(∛1000)
= (∛2 x 2 x 2)/(∛10 x 10 x 10 )
∛(0.008) = 2/10
∛(0.008)= 0.2
________________________________________________________________
5)∛(0.125)
Solution :
∛(0.125) = ∛(125/1000)
∛(125/1000) = (∛125)/(∛1000)
= (∛5 x 5 x 5)/(∛10 x 10 x 10 )
∛(0.125) = 5/10
∛(0.125)= 0.5
________________________________________________________________
6)∛(216/343)
Solution :
∛(216/343) = (∛216)/(∛343)
= (∛6 x 6 x 6)/(∛7 x 7 x 7 )
∛(216/343) = 6/7
________________________________________________________________
7)∛(1000/8)
Solution :
∛(1000/8) = (∛1000)/(∛8)
= (∛10 x 10 x 10)/(∛2 x 2 x 2 )
∛(1000/8) = 10/8
∛(1000/8)= 5/4
Cube and Cube Roots
• Cube of Numbers
• Perfect Cube
• Properties of Cube
• Cube by Column method
• Cube of Negative numbers
• Cube of Rational numbers
• Cube Root
• Finding cube root by Prime Factorization
• Cube root of Rational numbers
• Estimating cube root
From Cube root of rational-numbers to Exponents
Home Page