Explicit form When 'y' is expressed as function of x then such a function is called Explicit function. For example : 1) y = $x^{2}$ +1 2) y = sin(x) + $x^{3}$ 3) y = $\sqrt{x+1}$ |
Implicit form When the function is expressed in terms of x and y then such equations are called Implicit form. For example : 1) $x^{2} + y^{2}$= 5 2) $x^{2}$ + xy = 0 3) $y^{3} -y^{2} + x^{2}$= 0 |
$\frac{d}{dx}(x^{2})+ 2 \frac{d}{dx}(xy) + \frac{d}{dx}(y^{3}) = \frac{d}{dx}(42)$
Apply the power rule, product rule and chain rule for differentiation
2x + 2(x.$\frac{dy}{dx} + y.1) + 3y^{2}\frac{dy}{dx}$ = 0
2x + 2x. $\frac{dy}{dx} + 2y + 3y^{2}\frac{dy}{dx}$ = 0
2x + 2y + $\frac{dy}{dx}(2x + 3y^{2})$ = 0
$\frac{dy}{dx}(2x + 3y^{2})$ = -2x - 2y
$\frac{dy}{dx}(2x + 3y^{2})$ = -(2x + 2y)
$\frac{dy}{dx} = \frac{-(2x + 2y)}{(2x + 3y^{2})}$
Example 2 : If sin(y) = x.sin(a + y) , find $\frac{dy}{dx}$
Solution : We have sin(y) = x.sin(a + y)
Differentiating both sides with respect to x, we get
$\frac{d}{dx}(sin(y))= \frac{d}{dx}[x.sin(a + y)] $
Apply the product rule and chain rule for differentiation
cos(y)$\frac{dy}{dx}= 1.sin(a + y) + x.cos(a+ y) \frac{d}{dx}(a + y)$
cos(y)$\frac{dy}{dx}= sin(a + y) + x.cos(a+ y)[ \frac{d}{dx}(a) + \frac{dy}{dx}] $
cos(y)$\frac{dy}{dx}= sin(a + y) + x.cos(a+ y) . \frac{dy}{dx} $
cos(y)$\frac{dy}{dx} - x.cos(a+ y) . \frac{dy}{dx} $ = sin(a + y)
$\frac{dy}{dx}[cos(y) - x.cos(a + y)]$ = sin(a + y)
$\frac{dy}{dx} = \frac{sin(a + y)}{[cos(y) - x.cos(a + y)]}$