**Covid-19 has led the world to go through a phenomenal transition .**

**E-learning is the future today.**

**Stay Home , Stay Safe and keep learning!!!**

If u and v are the two functions of x, then

**$\int_{}^{} (uv) dx = u\left(\int_{}^{} (v)dx\right) - \int_{}^{}\left\{\frac{\text{d}u}{\text{d}x}\int_{}^{}(v) dx\right\}dx $**

OR

**$\int_{}^{} u.dv= u.v - \int_{}^{} v.du $**

The integral of the products of the two functions

= ( 1st function)X (integral of the 2nd function) - integral of (derivative of 1st function)x ((integral of the 2nd function)

$\frac{\text{d}}{\text{d}x}\left\{f(x).g(x)\right\}= f(x).\frac{\text{d}}{\text{d}x}[g(x)] + g(x).\frac{\text{d}}{\text{d}x}[f(x)]$

$\int_{}^{} \left\{ f(x).\frac{\text{d}}{\text{d}x}[g(x)] + g(x).\frac{\text{d}}{\text{d}x}[f(x)]\right\}dx = f(x).g(x)$

$\Rightarrow\int_{}^{} \left\{ f(x).\frac{\text{d}}{\text{d}x}[g(x)] \right\}+\int_{}^{} \left\{ g(x).\frac{\text{d}}{\text{d}x}[f(x)]\right\}dx = f(x).g(x)$

$\Rightarrow\int_{}^{} \left\{ f(x).\frac{\text{d}}{\text{d}x}[g(x)] \right\}dx = f(x).g(x) - \int_{}^{} \left\{ g(x).\frac{\text{d}}{\text{d}x}[f(x)]\right\}dx$

Let f(x) = u and $\frac{\text{d}}{\text{d}x}[g(x)] dx$ = v So that g(x) = $\int_{}^{}(v) dx$

$ \therefore \int_{}^{} (uv) dx = u\left(\int_{}^{} (v)dx\right) - \int_{}^{}\left\{\frac{\text{d}u}{\text{d}x}\int_{}^{}(v) dx\right\}dx $

Like PEMDAS or BODMAS, in Integration by parts we have to follow rule

I - stands for inverse functions

P - stands for polynomial functions

E - stands for exponential functions

T - stands for trigonometric functions

**Example 1 :** Evaluate : $\int_{ }^{ } x.sin(3x) dx$

**Solution :** Here there are two functions, one is polynomial and 2nd is trigonometric function. So according to LIPTE, u = x and $\frac{\text{d}v}{\text{d}x}$= sin(3x)

u = x

du = dx

$\frac{\text{d}v}{\text{d}x}$= sin(3x)

dv = sin(3x) dx

v= $\int_{ }^{ } sin(3x)dx$

v = $\frac{sin(3x)}{3}$

According to integration by parts,

$\int_{}^{} (uv) dx = u\left(\int_{}^{} (v)dx\right) - \int_{}^{}\left\{\frac{\text{d}u}{\text{d}x}\int_{}^{}(v) dx\right\}dx $

$\int_{}^{}x.sin(3x) dx = x.\int_{}^{}sin(3x)dx - \int_{}^{}\frac{\text{d}}{\text{d}x}(x)\int_{}^{}sin(3x) dx$

= -x $\frac{cos(3x)}{3} - \int_{}^{} \left\{\frac{-cos(3x)}{3}\right\}dx $

= $-x\frac{cos(3x)}{3} + \frac{1}{3}\int_{}^{} cos(3x)dx$

= $-x\frac{cos(3x)}{3} + \frac{1}{3}.\frac{sin(3x)}{3}$

= $-\frac{1}{3}x.cos(3x) + \frac{1}{9} sin(3x) + C $

**Example 2: ** Evaluate $x^{2}.ln(x)$

**Solution :** Here there are two functions, first is polynomial and 2nd is logarithmic function. So according to LIPTE, u = log(x) and $\frac{\text{d}v}{\text{d}x}= x^{2}$

u = ln(x)

du = $\frac{1}{x} dx $

$\frac{\text{d}v}{\text{d}x}= x^{2}$

dv = $x^{2}$dx

v= $\int_{ }^{ } x^{2}dx$

v = $\frac{x^{3}}{3}$

According to integration by parts,

$\int_{}^{} u.dv= u.v - \int_{}^{} v.du $

$\int_{}^{} ln(x).x^{2} = ln(x)\frac{x^{3}}{3}v - \int_{}^{} \frac{x^{3}}{3}.\frac{1}{x} $

= $\frac{1}{3}.x^{3} ln(x) - \int_{}^{} \frac{x^{2}}{3} $

=$\frac{1}{3}.x^{3} ln(x) - \frac{1}{3} \int_{}^{} x^{2} $

= $\frac{1}{3}.x^{3} ln(x) - \frac{1}{3}. \frac{x^{3}}{3} $

$\int_{}^{} ln(x).x^{2} =\frac{1}{3}.x^{3} ln(x) - \frac{x^{3}}{9} + C $

Home

**Covid-19 has affected physical interactions between people.**

**Don't let it affect your learning.**

GMAT

GRE

1st Grade

2nd Grade

3rd Grade

4th Grade

5th Grade

6th Grade

7th grade math

8th grade math

9th grade math

10th grade math

11th grade math

12th grade math

Precalculus

Worksheets

Chapter wise Test

MCQ's

Math Dictionary

Graph Dictionary

Multiplicative tables

Math Teasers

NTSE

Chinese Numbers

CBSE Sample Papers