If $\phi(x)$ is a continuously differentiable function, then to evaluate integrals of the form

$\int_{}^{} f(\phi(x)) \phi'(x) dx, $

We substitute $\phi(x)$ = u and $\phi'(x) dx = du$

This substitution reduces the above integral to

$\int_{}^{} f(u)du$

After evaluating this integral we substitute back the value of u.

2) $\int_{}^{}(ax +b)^{n}dx = \frac{(ax+b)^{(n+1)}}{a(n+1)} $ + C ,n $\neq$ -1

3) $\int_{}^{}sin(ax +b)dx = \frac{-1}{a} cos(ax+b) + c$

**Example 1 :** Integrate $(2x - 8)^{4}$ with respect to x.

**Solution : ** $\int_{}^{} (2x - 8)^{4}dx$

As the given function is not in the standard form so we can not find the integration of it directly. So we will use U-substitution method.

Let (2x - 8) = u

2dx = du

dx = $\frac{1}{2}du$

$\int_{}^{} (2x - 8)^{4}dx = \int_{}^{} (u)^{4}.\frac{1}{2}du$

= $\frac{1}{2}\int_{}^{} (u)^{4}du $

= $\frac{1}{2}.\frac{u^{4+1}}{4+1} $ (Applying power rule of integration)

= $\frac{1}{2}.\frac{u^{5}}{5} $

Now again replacing u as (2x-8)

$\int_{}^{} (2x - 8)^{4}dx = \frac{1}{2}.\frac{(2x-8)^{5}}{5} $

**Example 2 :** Integrate $sec^{2}(7 - 4x)$ with respect to x.

**Solution : ** $\int_{}^{} sec^{2}(7 - 4x)dx$

As the given function is not in the standard form so we can not find the integration of it directly. So we will use U-substitution method.

Let (7- 4x) = u

-4dx = du

dx = $\frac{-1}{4}du$

$\int_{}^{} sec^{2}(7 - 4x)dx = \int_{}^{} sec^{2}(u).\frac{-1}{4}du$

= $\frac{-1}{4}\int_{}^{} sec^{2}(u)du $

= $\frac{-1}{4}.tan(u) $ (Applying trigonometric integration rule)

Now again replacing u as (7 - 4x)

$\int_{}^{} sec^{2}(7 - 4x)dx = \frac{-1}{4}.tan(7-4x) + c $

**Example 3 :** Integrate $ sin^{2}(3x)cos(3x)$ with respect to x.

**Solution : ** $\int_{}^{} sin^{2}(3x)cos(3x)dx$

As the given function is not in the standard form so we can not find the integration of it directly. So we will use U-substitution method.

Let sin(3x) = u

3cos(3x) dx = du

cos(3x) dx = $\frac{1}{3}du$

$\int_{}^{} sin^{2}(3x)cos(3x)dx = \int_{}^{} u^{2}.\frac{1}{3}du$

= $\frac{1}{3}\int_{}^{} u^{2}du $

= $\frac{1}{3}.\frac{u^{2+1}}{2+1} $ (Applying power rule of integration)

=$\frac{1}{3}.\frac{u^{3}}{3} $

=$\frac{u^{3}}{9} $

Now again replacing u as sin(3x)

$\int_{}^{} sin^{2}(3x)cos(3x)dx = \frac{1}{9}.sin^{3}(3x) + c $

Home

GMAT

GRE

1st Grade

2nd Grade

3rd Grade

4th Grade

5th Grade

6th Grade

7th grade math

8th grade math

9th grade math

10th grade math

11th grade math

12th grade math

Precalculus

Worksheets

Chapter wise Test

MCQ's

Math Dictionary

Graph Dictionary

Multiplicative tables

Math Teasers

NTSE

Chinese Numbers

CBSE Sample Papers