Proof : As the triangle may be acute, right and obtuse so there are three cases. Case I : When ΔABC is an acute triangle. When Δ ABC is an acute triangle. Draw AD perpendicular from A to the opposite side BC meeting it in the point D. In ΔABD, we have , Cos B = $\frac{BD}{c}$ => BD = c. CosB ------- (1) In ΔACD, we have Cos C = $\frac{CD}{b}$ => CD = b. CosC In ΔACD, by Pythagorean theorem, we have, $ AC^{2} = AD^{2} + CD^{2}$ => $AC^{2} = AD^{2} + (BC - BD)^{2}$ => $AC^{2} = AD^{2} + BC^{2} + BD^{2}- 2BC.BD$ => $AC^{2} = BC^{2} + (AD^{2} +BD^{2})- 2BC.BD$ =>$ AC^{2} = BC^{2} + AB^{2}- 2BC.BD$ ----(2) (since $AD^{2} +BD^{2} = AB^{2}$) =>$ b^{2} = a^{2} + c^{2}- 2ac.CosB $ [ by equation (1)] => $cos B = \frac{c^{2}+ a^{2} - b^{2}}{2ac} $ |
Case II : When Δ ABC is an obtuse triangle. Draw AD perpendicular from A to BC meet at D outside the triangle. In Δ ABD, we have, Cos(180 - B) = $\frac{BD}{AB}$ => BD = - AB cos B => - c CosB------(3) In ΔACD, by Pythagorean theorem, we have, $ AC^{2} = BC^{2} + AB^{2}- 2BC.BD$ [ from equation (2)] $ AC^{2} = AD^{2} + CD^{2}$ => $AC^{2} = AD^{2} + (BC + BD)^{2}$ => $AC^{2} = AD^{2} + BC^{2} + BD^{2}+ 2BC.BD$ => $AC^{2} = BC^{2} + (AD^{2} +BD^{2})+ 2BC.BD$ =>$ AC^{2} = BC^{2} + AB^{2}+ 2BC.BD$ (since $AD^{2} +BD^{2} = AB^{2}$) =>$ b^{2} = a^{2} + c^{2}- 2a(-c.CosB) $ [ by equation (3)] =>$ b^{2} = a^{2} + c^{2}- 2ac.CosB $ => $cos B = \frac{c^{2}+ a^{2} - b^{2}}{2ac} $ |
Case III: When Δ ABC is right triangle. Let Δ ABC, be a right angle at B, then by Pythagorean theorem. $b^{2} = a^{2} + c^{2}$ => $b^{2} = a^{2} + c^{2} - 2 ac cosB $ ( since angle B = $\frac{\pi }{2}$ => CosB = 0) => $cos B = \frac{c^{2}+ a^{2} - b^{2}}{2ac} $ Hence in all the cases , we have $b^{2} = a^{2} + c^{2} - 2 ac. cosB $ Similarly, other cosine rules or other results can be proved. |