**Covid-19 has led the world to go through a phenomenal transition .**

**E-learning is the future today.**

**Stay Home , Stay Safe and keep learning!!!**

Let 'L' be any real number.

1)$\lim_{x \rightarrow \infty}f(x) = L$ means that for each $\epsilon$ > 0 there exists M > 0 such that

|f(x) - L| < $\epsilon$ whenever x > M.

2) $\lim_{x \rightarrow - \infty}f(x) = L$ means that for each $\epsilon$ > 0 there exists N < 0 such that |f(x) - L| < $\epsilon$ whenever x < N.

The line is a horizontal asymptote of the graph of when

$\lim_{x \rightarrow -\infty}f(x) = L$ OR $\lim_{x \rightarrow \infty}f(x)$ = L

The line is a vertical asymptote of the graph of when

$\lim_{x \rightarrow a}f(x) = \infty$ OR $\lim_{x \rightarrow \infty}f(x) = -\infty $

1) If the degree of the numerator < the degree of the denominator, then the limit of the rational function is 0.

2) If the degree of the numerator = the degree of the denominator, then the limit of the rational function is the ratio of the leading coefficients.

3) If the degree of the numerator > the degree of the denominator, then the limit of the rational function does not exist.

**Example 1 :** Find the limit of $\lim_{x \rightarrow \infty}\frac{2x-1}{3x +5}$

** Solution :** $\lim_{x \rightarrow \infty}\frac{2x-1}{3x +5}$

Take x as a common factor from numerator and denominator

= $\lim_{x \rightarrow \infty}\frac{x(2-\frac{1}{x})}{x(3 +\frac{5}{x})}$

= $\lim_{x \rightarrow \infty}\frac{2-\frac{1}{x}}{3 +\frac{5}{x}}$

( $\lim_{x \rightarrow \infty}\frac{1}{x} = 0)$

$\lim_{x \rightarrow \infty}\frac{2x-1}{3x +5} = \frac{2}{3}$

**Example 2 :** Find the limit of $\lim_{x \rightarrow \infty}\frac{2x^{2}+4 }{x^{2} -5x -1}$

** Solution :** $\lim_{x \rightarrow \infty}\frac{2x^{2}+4 }{x^{2} -5x -1}$

Take $x^{2}$ as a common factor from numerator and denominator

= $\lim_{x \rightarrow \infty}\frac{x^{2}(2+\frac{4}{x^{2}})}{x^{2}(1 -\frac{5}{x}-\frac{1}{x^{2}})}$

$\lim_{x \rightarrow \infty}\frac{(2+\frac{4}{x^{2}})}{(1 -\frac{5}{x}-\frac{1}{x^{2}})}$
( $\lim_{x \rightarrow \infty}\frac{1}{x} = 0 $ and $\lim_{x \rightarrow \infty}\frac{1}{x^{2}} = 0$)

$\lim_{x \rightarrow \infty}\frac{2x^{2}+4 }{x^{2} -5x -1}$ =2

Home

**Covid-19 has affected physical interactions between people.**

**Don't let it affect your learning.**

GMAT

GRE

1st Grade

2nd Grade

3rd Grade

4th Grade

5th Grade

6th Grade

7th grade math

8th grade math

9th grade math

10th grade math

11th grade math

12th grade math

Precalculus

Worksheets

Chapter wise Test

MCQ's

Math Dictionary

Graph Dictionary

Multiplicative tables

Math Teasers

NTSE

Chinese Numbers

CBSE Sample Papers