Sometimes the exponent of x may be negative, fractional or sometimes the integrand (the term to integrate) may be in radical.

The power rule of integration is an necessary step in integration or it is the basic step of integration.

**Power Rule of Integration **

$\int_{}^{} x^{n}dx = \frac{x^{n+1}}{n+1}$

(where c is the constant of integration)

**Example 1:** Integrate $x^{5}$ with respect to x.

**Solution :** $\int_{}^{} x^{5}dx$

By using the power rule

$\int_{}^{} x^{n}dx = \frac{x^{n+1}}{n+1}$

$\int_{}^{} x^{5}dx = \frac{x^{5+1}}{5+1}$

$\int_{}^{} x^{5}dx = \frac{x^{6}}{6} + c $ (where c is the constant of integration)

**Example 2:** Integrate $4x^{2}$ with respect to x.

**Solution :** $\int_{}^{} 4x^{2}dx$

By using the power rule

$\int_{}^{} x^{n}dx = \frac{x^{n+1}}{n+1}$

$\int_{}^{} 4x^{2}dx = \frac{4x^{2+1}}{2+1}$

$\int_{}^{} 4x^{2}dx = \frac{4x^{3}}{3} + c $ (where c is the constant of integration)

**Example 3:** Integrate $x^{-4}$ with respect to x.

**Solution :** $\int_{}^{} x^{5}dx$

By using the power rule

$\int_{}^{} x^{n}dx = \frac{x^{n+1}}{n+1}$

$\int_{}^{} x^{-4}dx = \frac{x^{-4+1}}{-4+1}$

$\int_{}^{} x^{-4}dx = \frac{x^{-3}}{-3}$

$\int_{}^{} x^{-4}dx = \frac{-1}{3x^{3}}$ + c (where c is the constant of integration)

**Example 4:** Integrate $\sqrt{x}$ with respect to x.

**Solution :** $\int_{}^{} \sqrt{x}dx$

By using the power rule

$\int_{}^{} x^{n}dx = \frac{x^{n+1}}{n+1}$

$\int_{}^{} \sqrt{x}dx =\int_{}^{} x^\frac{1}{2}dx$

$\int_{}^{} x^\frac{1}{2}dx =\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}$

$\int_{}^{} x^\frac{1}{2}dx=\frac{x^\frac{3}{2}}{\frac{3}{2}}$

$\int_{}^{} x^\frac{1}{2}dx=\frac{2x^\frac{3}{2}}{3}$

$\int_{}^{} x^\frac{1}{2}dx=\frac{2\sqrt{x^{3}}}{3}$ + c

Home

GMAT

GRE

1st Grade

2nd Grade

3rd Grade

4th Grade

5th Grade

6th Grade

7th grade math

8th grade math

9th grade math

10th grade math

11th grade math

12th grade math

Precalculus

Worksheets

Chapter wise Test

MCQ's

Math Dictionary

Graph Dictionary

Multiplicative tables

Math Teasers

NTSE

Chinese Numbers

CBSE Sample Papers