Problems on Intersection of three Sets

We at ask-math believe that educational material should be free for everyone. Please use the content of this website for in-depth understanding of the concepts. Additionally, we have created and posted videos on our youtube.

We also offer One to One / Group Tutoring sessions / Homework help for Mathematics from Grade 4th to 12th for algebra, geometry, trigonometry, pre-calculus, and calculus for US, UK, Europe, South east Asia and UAE students.

Affiliations with Schools & Educational institutions are also welcome.

Please reach out to us on [email protected] / Whatsapp +919998367796 / Skype id: anitagovilkar.abhijit

We will be happy to post videos as per your requirements also. Do write to us.

In this section, we will go through some practical problems on intersection of three sets.

For solving such a problems we have to consider the following rules :

If A, B and C are three finite sets then :
1) n ( A ∪ B ∪ C ) =
n(A) + n(B) + n(C) – n ( A ∩ B ) – n(B ∩ C) – n (A ∩ C) + n( A ∩ B ∩ C )

2) n[ A ∩ ( B ∪ C) ] = n ( A ∩ B ) + n ( A ∩ C) – n( A ∩ B ∩ C)

Problems on Intersection of three Sets :

1) In a survey of 200 students of a school it was found that 120 study mathematics, 90 study physics and 70 study chemistry, 40 study mathematics and physics, 30 study physics and chemistry, 50 study chemistry and mathematics and 20 study none of these subjects. Find the number of students who study all three subjects.

Solution :
M = Mathematics ; P = Physics and C = Chemistry

n(M) = 120 n(P) = 90 n (C) = 70 n ( M ∩ P) = 40
n ( P ∩ C ) = 30 n ( C ∩ M ) = 50 n ( M ∪ P ∪ C )’ = 20

Now n(M ∪ P ∪ C)’ = n(U) – n(M ∪ P ∪ C)

20 = 200 – n (M ∪ P ∪ C)

Therefore, n(M ∪ P ∪ C) = 200 – 20 = 180

n(M ∪ P ∪ C)
= n(M) + n(P) + n(C) – n(M ∩ P) – n(P ∩ C) – n(C ∩ M) + n(M ∩ P ∩ C)

180 = 120 + 90 + 70 - 40 - 30 - 50 + n(M ∩ P ∩ C)

⇒ n(M ∩ P ∩ C) =180 - 120 - 90 - 70 + 40 + 30 + 50

⇒ n(M ∩ P ∩ C) = 20.

2) In a survey of 60 people, it was found that 25 people read newspaper H, 26 read newspaper T, 26 read newspaper I, 9 read both H and I, 11 read both H and T, 8 read both T and I, 3 read all three newspapers. Find the number of people who read at least one of the newspapers.(problems on intersection of three sets)

Solution :
H = People who read newspaper H.

I = People who read newspaper I.

T = People who read newspaper T.

n(H) = 25 ; n(T)= 26 ; n(I)= 26 ; n(H ∩ I) = 9
n(H ∩ T) = 11 ; n(T ∩ I) = 8 and n(H ∩ T ∩ I) = 3

n(H ∪T ∪ I )= Number of people who read at least one of the newspapers

= n(H) + n(T) + n(I) – n(H ∩ T) – n(T ∩ I) – n(H ∩ I) + n(H ∩ T ∩ I)

n(H ∪T ∪ I )= 25+ 26 + 26 - 11 - 9 - 8 + 3

= 77 - 28 + 3

= 80 - 28

= 52

Hence the number of people who read at least one of the newspapers is 52.

Set Theory

Sets
Representation of Set
Cardinal Number
Types of Sets
Pairs of Sets
Subset
Complement of Set
Union of the Sets
Intersection of Sets
Operations on Sets
De Morgan's Law
Venn Diagrams
Venn-diagrams for sets
Venn-diagrams for different situations
Problems on Intersection of Two Sets
Problems on Intersection of Three Sets
Home Page

Russia-Ukraine crisis update - 3rd Mar 2022

The UN General assembly voted at an emergency session to demand an immediate halt to Moscow's attack on Ukraine and withdrawal of Russian troops.