# Sum and Difference rules

We at ask-math believe that educational material should be free for everyone. Please use the content of this website for in-depth understanding of the concepts. Additionally, we have created and posted videos on our youtube.

We also offer One to One / Group Tutoring sessions / Homework help for Mathematics from Grade 4th to 12th for algebra, geometry, trigonometry, pre-calculus, and calculus for US, UK, Europe, South east Asia and UAE students.

Affiliations with Schools & Educational institutions are also welcome.

Please reach out to us on [email protected] / Whatsapp +919998367796 / Skype id: anitagovilkar.abhijit

We will be happy to post videos as per your requirements also. Do write to us.

The derivatives of sum and difference rules is simply put the the derivative of a sum (or difference) is equal to the sum (or difference) of the derivatives.
If 'f' and 'g' are two differentiable function at x then,

$\color{red} {\frac{\text{d} }{\text{d}x}[f(x) + g(x)] = \frac{\text{d}}{\text{d}x}f(x) + \frac{\text{d}}{\text{d}x}g(x) }$

$\color{red}{\frac{\text{d} }{\text{d}x}[f(x) + g(x)] =f'(x) +g'(x)}$

$\color{green}{\frac{\text{d} }{\text{d}x}[f(x) - g(x)] = \frac{\text{d}}{\text{d}x}f(x) - \frac{\text{d}}{\text{d}x}g(x) }$

$\color{green}{\frac{\text{d} }{\text{d}x}[f(x) - g(x)] =f'(x) - g'(x)}$

Proof for the sum rule :

$\frac{\text{d} }{\text{d}x}[f(x) + g(x)] =\lim_{\triangle x \rightarrow 0}\frac{[f(x +\triangle x)+g(x + \triangle x)]-[f(x) + g(x)] }{\triangle x}$

=$=\lim_{\triangle x \rightarrow 0}\frac{[f(x +\triangle x) -f(x)]+[g(x + \triangle x)- g(x)] }{\triangle x}$

= $=\lim_{\triangle x \rightarrow 0}\frac{[f(x +\triangle x) -f(x)] }{\triangle x}+ \lim_{\triangle x \rightarrow 0}\frac{[g(x +\triangle x) -g(x)] }{\triangle x}$

$\frac{\text{d} }{\text{d}x}[f(x) + g(x)] = \frac{\text{d}}{\text{d}x}f(x) + \frac{\text{d}}{\text{d}x}g(x)$

Proof for the difference rule :

$\frac{\text{d} }{\text{d}x}[f(x) - g(x)] =\lim_{\triangle x \rightarrow 0}\frac{[f(x +\triangle x)-g(x + \triangle x)]-[f(x) - g(x)]}{\triangle x}$

=$=\lim_{\triangle x \rightarrow 0}\frac{[f(x +\triangle x) -f(x)]-[g(x + \triangle x)- g(x)] }{\triangle x}$

= $=\lim_{\triangle x \rightarrow 0}\frac{[f(x +\triangle x) -f(x)] }{\triangle x}- \lim_{\triangle x \rightarrow 0}\frac{[g(x +\triangle x) -g(x)] }{\triangle x}$

$\frac{\text{d} }{\text{d}x}[f(x) - g(x)] = \frac{\text{d}}{\text{d}x}f(x) - \frac{\text{d}}{\text{d}x}g(x)$

## Examples on sum and difference rules

Find the derivative of the following using the sum and difference rules.
1) f(x)= $x^{3} -4x^{2}$ + 8
Solution : f(x)=y = $x^{3} -4x^{2}$ + 8
$\frac{\text{d}y}{\text{d}x} = \frac{\text{d}}{\text{d}x}[x^{3} - 4x^{2}+8]$

$= \frac{\text{d}}{\text{d}x}(x^{3}) - \frac{\text{d}}{\text{d}x}(4x^{2}) + \frac{\text{d}}{\text{d}x}(8)$

Applying power rule and constant rule of derivative
=$3x^{2}$ -(4)(2)x + 0

f'(x) = $\frac{\text{d}y}{\text{d}x}= 3x^{2} - 8x$

2) f(x) = y = $-\frac{x^{4}}{3} + 8x$

Solution : y = $-\frac{x^{4}}{3} + 8x$

$\frac{\text{d}y}{\text{d}x}= -\frac{x^{4}}{3} + 8x$

$=\frac{\text{d}}{\text{d}x}(-\frac{x^{4}}{3}) +\frac{\text{d}}{\text{d}x}(8x)$

$\frac{\text{d}y}{\text{d}x}= -\frac{4x^{3}}{3} + 8$

3) f(x) = y = $\frac{3x^{2}-1}{x}$

Solution : y = $\frac{3x^{2}-1}{x}$

$\frac{\text{d}y}{\text{d}x}= \frac{\text{d}}{\text{d}x}[\frac{3x^{2}-1}{x}]$

= $\frac{\text{d}}{\text{d}x}(\frac{3x^{2}}{x}) -\frac{\text{d}}{\text{d}x}(\frac{1}{x})$

= $\frac{\text{d}}{\text{d}x}(3x) -\frac{\text{d}}{\text{d}x}(x^{-1})$

= $3 -(-1)(x^{-2})$

$\frac{\text{d}y}{\text{d}x} = 3 + x^{-2}$

$\frac{\text{d}y}{\text{d}x} = 3 + \frac{1}{x^{2}}$